
dV/dt Accelerating the Rate of
Progress towards Extreme
Scale Collaborative Science

Miron Livny (UW)
Ewa Deelman, Gideon Juve, Rafael Ferreira da Silva (USC)

Ben Tovar, Casey Robinson, Douglas Thain (ND)
 Frank Wuerthwein (UCSD)

 Bill Allcock (ANL)

!
!
!

Funded&by&DOE&

1 https://sites.google.com/site/
acceleratingexascale/publications

Thesis

!  Researchers band together into dynamic collaborations
and employ a number of applications, software tools,
data sources, and instruments

!  They have access to a growing variety of processing,
storage and networking resources

!  Goal: “make it easier for scientists to conduct large-scale
computational tasks that use the power of computing
resources they do not own to process data they did not
collect with applications they did not develop”

Challenges today

!  Estimate the application resource needs
!  Finding the appropriate computing resources
!  Acquiring those resources
!  Deploying the applications and data on the resources
!  Managing applications and resources during run
!  Make sure the application actually finishes successfully!

!  Approach: Develop a framework that encompass the five
phases of collaborative computing—estimate, find, acquire,
deploy, and use

B1!

B2!

B3!

A1! A2! A3!

F!

Regular Graphs Irregular Graphs

A!

1!

B!

2! 3!

7!5! 6!4!

C! D! E!

8! 9! 10!

A!

Dynamic Workloads

while(more work to
do) {
 foreach work unit {
 t = create_task();
 submit_task(t);
 }

 t = wait_for_task();
 process_result(t);
}

Static Workloads

Concurrent Workloads

Application Characterization

F! F!

F!

F! F!

F! F!

F!

Portal Generated Workflows using Makeflow

BLAST (Small)
17 sub-tasks
~4h on 17 nodes

BWA
825 sub-tasks
~27m on 100 nodes

SHRIMP
5080 sub-tasks
~3h on 200 nodes

Periodograms: generate an atlas
of extra-solar planets

!  Find extra-solar planets by
–  Wobbles in radial velocity of star, or
–  Dips in star’s intensity

Planet
Star

Light Curve

Time B
rig

ht
ne

ss

210k light-curves released in July 2010
Apply 3 algorithms to each curve
3 different parameter sets

•  210K input, 630K output files
•  1 super-workflow
•  40 sub-workflows
•  ~5,000 tasks per sub-workflow
•  210K tasks total

Pegasus-managed workflows

Characterizing Application Resource Needs

Task Characterization/Execution

!  Understand the resource needs of a task

!  Establish expected values and limits for task resource
consumption

!  Launch tasks on the correct resources

!  Monitor task execution and resource consumption,
interrupt tasks that reach limits

!  Possibly re-launch task on different resources

Data Collection and Modeling

RAM:!50M!
Disk:!!1G!!
CPU:!!!4!C!

monitor!

task!

workflow!

A

C

F!

typ max min

P
RAM

B

A!!!!

B!
D E

C!

D! E!

F!

Schedule Workflow Structure Workflow Profile

Task Type Profile
Records From
Many Tasks Task Record

RAM:!50M!
Disk:!!1G!!
CPU:!!!4!C!

RAM:!50M!
Disk:!!1G!!
CPU:!!!4!C!

RAM:!50M!
Disk:!!1G!!
CPU:!!!4!C!

Resource Usage Monitoring

Resource Monitoring

!  Measure Resource Usage
–  Runtime (wall time of process)
–  CPU usage (FLOPs, utime, stime)
–  Memory usage (peak resident set size, peak VM size)
–  I/O (data read/written, number of reads/writes)
–  Disk (size of files accessed/created)

!  Impose Limits
–  Use models to predict usage
–  Use predictions to set limits
–  Detect violations of limits to prevent problems at runtime

Monitoring Accuracy with Synthetic Benchmarks
Table 3: Monitoring Accuracy

Baseline Polling fork/exit fork/exit syscall
LD PRELOAD ptrace ptrace

(resource monitor) (resource monitor) (kickstart) (kickstart)
Instr. (a) CPU time

106 0.32 s +0.04 (12.50%) +0.02 (4.91%) 0.00 (0.00%) 0.00 (0.00%)
107 2.93 s +0.06 (2.12%) +0.04 (1.20%) 0.00 (0.00%) +0.01 (0.14%)
108 28.20 s +0.17 (0.60%) +0.09 (0.31%) +0.03 (0.10%) +0.04 (0.14%)
109 279.53 s +1.29 (0.46%) +1.32 (0.47%) +0.20 (0.07%) +0.41 (0.15%)
Memory (b) Memory: resident size
1GB 1GB �13.96% +0.08% +0.03% +0.03%
2GB 2GB �17.63% +0.03% +0.02% +0.02%
4GB 4GB �2.25% +0.02% 0.00% 0.00%
8GB 8GB �1.89% +0.01% 0.00% 0.00%
16GB 16GB �1.99% +0.01% 0.00% 0.00%
File size (c) I/O: bytes read, 4KB bu↵er
1MB 1MB �13.64% 0.00% 0.00% 0.00%
100MB 100MB �9.07% 0.00% 0.00% 0.00%
1GB 1GB �5.84% 0.00% 0.00% 0.00%
10GB 10GB �2.13% 0.00% 0.00% 0.00%
Bu↵er size (d) I/O: bytes read, 1GB file
4KB 1GB �5.84% 0.00% 0.00% 0.00%
8KB 1GB �0.82% 0.00% 0.00% 0.00%
16KB 1GB �15.41% 0.00% 0.00% 0.00%
32KB 1GB �18.41% 0.00% 0.00% 0.00%

ing ssh keys for authentication. When submitting sets of
resources summaries, a description of the set may be in-
cluded. This description, such as the directed acyclic graph
of tasks dependencies in a workflow, is used to characterize
and compare tasks across di↵erent sets. The archive can be
queried to produce task summaries that match conditions,
such as task name, monitoring tool used, set description,
and resource values comparisons.

Perhaps surprisingly, instances of the same task may show
di↵erent resources values; the task may not change, but it is
di�cult to run the task in the same environment every time.
Even if task instances run on the same host, the resources
available at the host change (e.g., memory available to the
task). This presents two non-trivial challenges: how are the
sets of possible resource values characterized?, and how do
we design exception handling for such a wide range of valid
resource values? We plan to address these questions in our
future work, and as of today, we are using the archive to
observe and better understand variability of resources usage
for a given task running on di↵erent available nodes.

As an example of this resource variability, we include in
Table 5 some statistics for the task rmapper, part of the
SHRiMP[32] package, to align genomic sequences to target
genomes. The statistics were computed from 96,501 resource
summaries, executed using the Condor pool at the Univer-
sity of Notre Dame. The pool has approximately 12,850
nodes, running di↵erent versions of Linux for the x86 64 ar-
chitecture. In Table 5 we only include resources that show
some interesting variability; resources such as virtual mem-
ory and disk footprint had very dominant peaks (kurtosis in
the order of thousands), which as expected for well-behaved
tasks, describe very small variability across the di↵erent
computing nodes. In comparison, high variability in resident
memory is reflected in relatively high standard deviation and
negative kurtosis.

In future work, we plan to use the archive to bootstrap
resource management loop: when executing new tasks, the
resources used by previous tasks instances can be queried
from the archive, and appropriate resource allocation, with
resource limits to be enforced can be determined.

7. RELATED WORK
There is a large number of system monitoring tools that

use query and event-based mechanisms. Included among
these are common system monitoring tools such as top, ps,
free and the Sysstat suite [15], which includes sar and
other tools.
Some monitoring tools have been developed for character-

izing the resource usage of HPC workloads. TACC Stats [22]
collects resource usage information including CPU usage,
memory usage, filesystem and network I/O, and hardware
performance counters. These values are recorded as a time
series from procfs, sysfs and other sources. The data is
correlated with individual jobs for later analysis based on
job ID. NCAR has used a similar approach for monitoring
CPU usage and floating point operations for HPC jobs [40].
There are several tools that use interposition to collect

information about program behavior. The strace [35] and
ltrace [21] tools use interposition to report system calls and
library calls, respectively. LANL-Trace [19] uses these tools
to profile the I/O behavior of parallel applications. Para-

Trac [9] interposes I/O operations using a FUSE [13] filesys-
tem that records information about I/O operations before
passing them on to an underlying filesystem that stores the
actual data. The system uses chroot to ensure that all ap-
plication I/O passes through the profiling filesystem trans-
parently. ParaTrac also collects information from procfs,

taskstats [37] and the workflow management system to pro-
vide complete application profiles.
Many MPI profiling libraries that use PMPI for function

resource_monitor! kickstart!

Monitoring Overhead
Table 4: Monitoring Overhead

Baseline Polling fork/exit fork/exit syscall
LD PRELOAD ptrace ptrace

(resource monitor) (resource monitor) (kickstart) (kickstart)
Instr. (a) CPU overhead

106 0.32 s +0.22 (68.75%) +0.25 (78.13%) +0.18 (56.25%) +0.13 (40.63%)
107 2.93 s +0.28 (9.56%) +2.42 (82.59%) +0.14 (4.78%) +0.14 (4.78%)
108 28.20 s +0.17 (0.60%) +0.22 (0.78%) +0.10 (0.35%) +0.12 (0.43%)
109 279.53 s +0.28 (0.10%) +0.78 (0.28%) +0.07 (0.03%) +0.61 (0.22%)
Resident size (b) Memory overhead
1GB 3.57 s +0.17 (4.76%) +0.26 (7.28%) +0.06 (1.68%) +0.07 (1.96%)
2GB 6.19 s +0.10 (1.62%) +0.14 (2.26%) +0.09 (1.45%) +0.06 (0.97%)
4GB 12.64 s +0.50 (3.96%) +0.86 (6.80%) +0.24 (1.90%) +0.43 (3.40%)
8GB 25.06 s +0.51 (2.04%) +1.88 (7.50%) +0.87 (3.47%) +0.96 (3.83%)
16GB 52.81 s +1.11 (2.10%) +4.69 (8.88%) +1.38 (2.61%) +2.25 (4.26%)
File size (c) I/O overhead, 4KB bu↵er
1MB 0.01 s +0.17 (1700%) +0.24 (2400.00%) +0.13 (1300.00%) +0.14 (1400.00%)
100MB 1.53 s +0.09 (5.88%) +0.10 (6.54%) +0.09 (5.88%) +1.82 (118.95%)
1GB 16.02 s +0.04 (0.25%) +0.38 (2.37%) +0.36 (2.25%) +15.98 (99.75%)
10GB 153.98 s +0.54 (0.35%) +0.64 (0.42%) +0.58 (0.38%) +143.95 (93.49%)
Bu↵er size (d) I/O overhead, 1GB file
4KB 16.02 s +0.04 (0.25%) +0.38 (2.37%) +0.36 (2.25%) +15.98 (99.75%)
8KB 9.14 s +0.20 (2.19%) +0.38 (4.16%) +0.24 (2.63%) +8.72 (95.40%)
16KB 6.40 s +0.23 (3.59%) +0.34 (5.31%) +0.30 (4.69%) +4.13 (64.53%)
32KB 4.37 s +0.18 (4.12%) +0.43 (9.84%) +0.60 (13.73%) +2.11 (48.28%)

Table 5: Resource Archive Statistics for 96501 Instances of a Single Task in a Workflow
resource wall time cpu time resident memory swap memory

histogram 321s
122 s 777 s

21490

319 s
121 s 684 s

21022

208 MB 817 MB

61615

0 MB
175 MB

88918

mean 410.55 s 406.17 s 682.62 MB 1.03 MB
std. dev. 79.16 73.86 208.83 7.63
skewness 0.42 0.17 -1.11 -0.61
kurtosis 0.26 -0.10 10.96 146.37

interposition, including Jumpshot [41], mpiP [26], FPMPI [12],
Scalasca [14] and others. Function interposition is used by
several tools to implement I/O profiling. Darshan [3] uses
PMPI and other function call interposition techniques to
observe the I/O behavior of MPI applications. IOT [31]
uses both PMPI and a GNU linker extension that enables
functions to be wrapped at link time to enable I/O tracing.
HPCT-IO [33] interposes UNIX I/O calls by either requiring
applications to include a header file that redefines the I/O
functions and redirects them to a tracing library, or by using
dynamic binary instrumentation to replace the I/O function
calls in the application binary. Condor uses link-time inter-
position for implementing checkpointing and remote I/O for
HTC jobs [20]

8. CONCLUSION AND FUTURE WORK
In this paper we presented a study of resource usage mon-

itoring techniques for a broad spectrum of science applica-
tions. We defined several categories of resource usage that

are of interest for workload management and planning, in-
cluding CPU usage, memory usage, storage, and I/O.
Many di↵erent mechanisms are available for measuring

these resources, but there is a large number of challenges
and tradeo↵s that need to be considered when using these
mechanisms for monitoring. In order to better understand
these issues, we grouped the mechanisms into three general
categories based on their method of operation (queries, noti-
fications, interpositions), and compared the available mech-
anisms across a wide range of di↵erent characteristics, in-
cluding portability, intrusiveness, performance impact, level
of e↵ort, accuracy, and others. Finally, we described the im-
plementation of di↵erent levels of monitoring, and presented
an evaluation of the accuracy and overhead of these tools.
In the future we plan to deploy our monitoring tools on

production infrastructure to collect resource usage data for
science applications. This data will help us extend our pre-
vious work [11] on using historical resource usage data to
automatically construct resource usage models for applica-
tions. These models can be used to derive estimates of future

resource_monitor! kickstart!

Condor Job Wrapper

!  Selectively wraps Condor jobs
with monitoring tools
–  Uses USER_JOB_WRAPPER

functionality of Condor
–  Does not wrap jobs that have failed
–  Selectively monitors based on user,

executable, etc.
–  Selectively monitors a given

percentage of jobs (e.g. 50% of jobs)
–  Detects monitor errors and restarts

job without wrapper

!  Allows us to easily deploy
monitoring tools on production
Condor pools

Condor!Scheduler!
(schedd)!

Condor!Job!Starter!
(startd)!

dV/dt!Job!Wrapper!

Job! Job!

Job!Kickstart! RM!

Data Collection and Modeling

RAM:!50M!
Disk:!!1G!!
CPU:!!!4!C!

monitor!

task!

workflow!

A

C

F!

typ max min

P
RAM

B

A!!!!

B!
D E

C!

D! E!

F!

Schedule Workflow Structure Workflow Profile

Task Type Profile
Records From
Many Tasks Task Record

RAM:!50M!
Disk:!!1G!!
CPU:!!!4!C!

RAM:!50M!
Disk:!!1G!!
CPU:!!!4!C!

RAM:!50M!
Disk:!!1G!!
CPU:!!!4!C!

Resource Monitoring Archive

!  Stores monitoring records

!  Provides a query interface for analyzing data

Table 4: Monitoring Overhead
Baseline Polling fork/exit fork/exit syscall

LD PRELOAD ptrace ptrace
(resource monitor) (resource monitor) (kickstart) (kickstart)

Instr. (a) CPU overhead

106 0.32 s +0.22 (68.75%) +0.25 (78.13%) +0.18 (56.25%) +0.13 (40.63%)
107 2.93 s +0.28 (9.56%) +2.42 (82.59%) +0.14 (4.78%) +0.14 (4.78%)
108 28.20 s +0.17 (0.60%) +0.22 (0.78%) +0.10 (0.35%) +0.12 (0.43%)
109 279.53 s +0.28 (0.10%) +0.78 (0.28%) +0.07 (0.03%) +0.61 (0.22%)
Resident size (b) Memory overhead
1GB 3.57 s +0.17 (4.76%) +0.26 (7.28%) +0.06 (1.68%) +0.07 (1.96%)
2GB 6.19 s +0.10 (1.62%) +0.14 (2.26%) +0.09 (1.45%) +0.06 (0.97%)
4GB 12.64 s +0.50 (3.96%) +0.86 (6.80%) +0.24 (1.90%) +0.43 (3.40%)
8GB 25.06 s +0.51 (2.04%) +1.88 (7.50%) +0.87 (3.47%) +0.96 (3.83%)
16GB 52.81 s +1.11 (2.10%) +4.69 (8.88%) +1.38 (2.61%) +2.25 (4.26%)
File size (c) I/O overhead, 4KB bu↵er
1MB 0.01 s +0.17 (1700%) +0.24 (2400.00%) +0.13 (1300.00%) +0.14 (1400.00%)
100MB 1.53 s +0.09 (5.88%) +0.10 (6.54%) +0.09 (5.88%) +1.82 (118.95%)
1GB 16.02 s +0.04 (0.25%) +0.38 (2.37%) +0.36 (2.25%) +15.98 (99.75%)
10GB 153.98 s +0.54 (0.35%) +0.64 (0.42%) +0.58 (0.38%) +143.95 (93.49%)
Bu↵er size (d) I/O overhead, 1GB file
4KB 16.02 s +0.04 (0.25%) +0.38 (2.37%) +0.36 (2.25%) +15.98 (99.75%)
8KB 9.14 s +0.20 (2.19%) +0.38 (4.16%) +0.24 (2.63%) +8.72 (95.40%)
16KB 6.40 s +0.23 (3.59%) +0.34 (5.31%) +0.30 (4.69%) +4.13 (64.53%)
32KB 4.37 s +0.18 (4.12%) +0.43 (9.84%) +0.60 (13.73%) +2.11 (48.28%)

Table 5: Resource Archive Statistics for 96501 Instances of a Single Task in a Workflow
resource wall time cpu time resident memory swap memory

histogram 321s
122 s 777 s

21490

319 s
121 s 684 s

21022

208 MB 817 MB

61615

0 MB
175 MB

88918

mean 410.55 s 406.17 s 682.62 MB 1.03 MB
std. dev. 79.16 73.86 208.83 7.63
skewness 0.42 0.17 -1.11 -0.61
kurtosis 0.26 -0.10 10.96 146.37

interposition, including Jumpshot [41], mpiP [26], FPMPI [12],
Scalasca [14] and others. Function interposition is used by
several tools to implement I/O profiling. Darshan [3] uses
PMPI and other function call interposition techniques to
observe the I/O behavior of MPI applications. IOT [31]
uses both PMPI and a GNU linker extension that enables
functions to be wrapped at link time to enable I/O tracing.
HPCT-IO [33] interposes UNIX I/O calls by either requiring
applications to include a header file that redefines the I/O
functions and redirects them to a tracing library, or by using
dynamic binary instrumentation to replace the I/O function
calls in the application binary. Condor uses link-time inter-
position for implementing checkpointing and remote I/O for
HTC jobs [20]

8. CONCLUSION AND FUTURE WORK
In this paper we presented a study of resource usage mon-

itoring techniques for a broad spectrum of science applica-
tions. We defined several categories of resource usage that

are of interest for workload management and planning, in-
cluding CPU usage, memory usage, storage, and I/O.
Many di↵erent mechanisms are available for measuring

these resources, but there is a large number of challenges
and tradeo↵s that need to be considered when using these
mechanisms for monitoring. In order to better understand
these issues, we grouped the mechanisms into three general
categories based on their method of operation (queries, noti-
fications, interpositions), and compared the available mech-
anisms across a wide range of di↵erent characteristics, in-
cluding portability, intrusiveness, performance impact, level
of e↵ort, accuracy, and others. Finally, we described the im-
plementation of di↵erent levels of monitoring, and presented
an evaluation of the accuracy and overhead of these tools.
In the future we plan to deploy our monitoring tools on

production infrastructure to collect resource usage data for
science applications. This data will help us extend our pre-
vious work [11] on using historical resource usage data to
automatically construct resource usage models for applica-
tions. These models can be used to derive estimates of future

Resource Usage Limits

Limits specification Record with alarm

global: limits file

local: per task rule

Resource Usage Modeling

Workflow Execution Profiling

!  Workflows were executed using Pegasus WMS

 and profiled
–  Monitors and records fine-grained data
–  E.g. process I/O, runtime, memory usage, CPU utilization

!  3 runs of each workflow with different datasets

mProjectPP mDiffFit mConcatFit mBgModel mBackground

mImgtbl mAdd mShrink mJPEGSmall (20 node) Montage Workflow

fastQSplit

filterContams

sol2sanger

fastq2bfq

map

mapMerge

maqIndex

pileup

Epigenomics Workflow

����������	
�������

���

Periodogram Workflow

Work of Rafael Ferreira da Silva

Execution Profile: Montage Workflow

Task estimation could be based on mean values

Task estimation based on average may lead
to significant estimation errors

uses Kickstart profiling tool

16-core cluster
 5 Dual core MP OpteronTM Processor 250 2.4GHz / 8GB RAM
 3 Dual core MD AMD OpteronTM Processor 275 2.2 GHz / 8GB RAM

Automatic Workflow Characterization

•  Characterize tasks based on their estimation capability
•  Runtime, I/O write, memory peak ! estimated from I/O read

•  Use correlation statistics to identify statistical relationships
between parameters
•  High correlation values yield accurate estimations, Estimation based

on the ratio: parameter/input data size

Constant values

Correlated if
ρ > 0.8

Epigenomics workflow

Task Estimation Process

•  Based on Regression Trees
•  Built offline from historical data analyses

Tasks are classified by
application, then task type

Estimation of runtime, I/O write,
or memory peak

If strongly correlated to the input data:
•  Estimation based on the ratio

parameter/input data size
•  Otherwise, estimation based on the mean

Online Estimation Process

•  Based on the MAPE-K loop
•  Task executions are constantly monitored
•  Estimated values are updated, and a new prediction is done

Offline Estimation

Monitoring

Tasks
submission

Analysis

Task
completion

Correct
estimation?

yes

New Estimation

no

Execution

Replanning

Online Estimation Process

Experiment: Use Estimations Online, while the
workflow is executing
•  Trace analysis of 3 workflow applications

•  Montage
•  Epigenomics
•  Periodogram

•  Leave-one-out cross-validation
•  Evaluate the accuracy of our online estimation process
•  3 different workflow execution traces for each workflow

•  Simulator
•  Replays workflow executions

Results: Average Estimation Errors - Montage

Online Process
Avg. Runtime Error: 18%
Avg. I/O Write Error: 9%
Avg. Memory Error: 13%

Offline Process
Avg. Runtime Error: 43%
Avg. I/O Write Error: 56%
Avg. Memory Error: 53%

Poor output data estimations leads
to a chain of estimation errors in

scientific workflows

•  Online strategy counterbalances the propagation of estimation errors

Conclusions

A planning framework that:
!  Starts with an unknown application

!  Characterizes it, models it, and manages execution
dynamically

Future:

!  Experiments at scale on Condor pool at UW and OSG
resources (model heterogeneous resources)

!  Integrate resource provisioning into planning

!  Experiment with predictions and resource provisioning
!  https://sites.google.com/site/acceleratingexascale/

